Evaluating Changes in Cell-Wall Components Associated with Clubroot Resistance Using Fourier Transform Infrared Spectroscopy and RT-PCR
نویسندگان
چکیده
Clubroot disease is a serious threat to canola production in western Canada and many parts of the world. Rcr1 is a clubroot resistance (CR) gene identified recently and its molecular mechanisms in mediating CR have been studied using several omics approaches. The current study aimed to characterize the biochemical changes in the cell wall of canola roots connecting to key molecular mechanisms of this CR gene identified in prior studies using Fourier transform infrared (FTIR) spectroscopy. The expression of nine genes involved in phenylpropanoid metabolism was also studied using qPCR. Between susceptible (S) and resistance (R) samples, the most notable biochemical changes were related to an increased biosynthesis of lignin and phenolics. These results were supported by the transcription data on higher expression of BrPAL1. The up-regulation of PAL is indicative of an inducible defence response conferred by Rcr1; the activation of this basal defence gene via the phenylpropanoid pathway may contribute to clubroot resistance conferred by Rcr1. The data indicate that several cell-wall components, including lignin and pectin, may play a role in defence responses against clubroot. Principal components analysis of FTIR data separated non-inoculated samples from inoculated samples, but not so much between inoculated S and inoculated R samples. It is also shown that FTIR spectroscopy can be a useful tool in studying plant-pathogen interaction at cellular levels.
منابع مشابه
Interaction of Cisplatin with Cellular Macromolecules: A Fourier Transform Infrared Spectroscopy Study
Platinum is a metallic element, which may react with our cellular component through its involvement in cancer chemotherapy medications. Cisplatin is one of the most useful antineoplastic drugs against human ovarian carcinoma, which has the central element of platinum in its structure. The nature of chemical interaction between platinum and cellular macromolecules is yet to be understood. We exa...
متن کاملInteraction of Cisplatin with Cellular Macromolecules: A Fourier Transform Infrared Spectroscopy Study
Platinum is a metallic element, which may react with our cellular component through its involvement in cancer chemotherapy medications. Cisplatin is one of the most useful antineoplastic drugs against human ovarian carcinoma, which has the central element of platinum in its structure. The nature of chemical interaction between platinum and cellular macromolecules is yet to be understood. We exa...
متن کاملDiscrimination of Human Cell Lines by Infrared Spectroscopy and Mathematical Modeling
Variations in biochemical features are extensive among cells. Identification of marker that is specific for each cell is essential for following the differentiation of stem cell and metastatic growing. Fourier transform infrared spectroscopy (FTIR) as a biochemical analysis more focused on diagnosis of cancerous cells. In this study, commercially obtained cell lines such as Human ovarian carcin...
متن کاملDiscrimination of Human Cell Lines by Infrared Spectroscopy and Mathematical Modeling
Variations in biochemical features are extensive among cells. Identification of marker that is specific for each cell is essential for following the differentiation of stem cell and metastatic growing. Fourier transform infrared spectroscopy (FTIR) as a biochemical analysis more focused on diagnosis of cancerous cells. In this study, commercially obtained cell lines such as Human ovarian carcin...
متن کاملCisplatin Resistant Patterns in Ovarian Cell Line Using FTIR and Principle Component Analysis
Cisplatin is a common chemotherapeutic agent that used for treatment of many solid cancers. Rapid identification of chemotherapy resistance is very important and may lead to effective treatment plan. Spectroscopy techniques, such as infrared spectroscopy, which are sensitive to biochemical composition of samples, have shown potentials to discriminate tissues. Developing in Fourier transform inf...
متن کامل